Fie G un graf orientat cu N noduri şi M arce. Spunem că nodul Y este accesibil din nodul X dacă se poate ajunge de la X la Y mergând pe arce în sensul corespunzător al acestora. Spunem că nodul X este “popular” dacă pentru fiecare nod Y al grafului G se îndeplineşte cel puţin una dintre condiţiile:
1. X este accesibil din Y;
2. Y este accesibil din X.
Cerinţă
Dându-se cele două numere N şi M precum şi arcele grafului, să se afle care sunt nodurile populare din graf.
Date de intrare
Prima linie a fişierului drumuri2.in conţine numerele N şi M, cu semnificaţia din enunţ. Următoarele M linii conţin câte două numere X şi Y, semnificând faptul că există arc de la X la Y.
Date de ieşire
Prima linie a fişierului drumuri2.out conţine numărul NR, reprezentând numărul de noduri populare ale grafului. Următoarea linie va conţine cele NR noduri populare afişate în ordine crescătoare.
Restricţii
• 1 ≤ N ≤ 60 500
• 1 ≤ M ≤ 105 000
• Pentru 65% din teste, G este aciclic
Exemple
drumuri2.in
drumuri2.out
Explicaţii
5 4
1 2
3 2
2 4
4 5
3
2 4 5
Nodurile 2, 4 şi 5 sunt singurele noduri populare. Nodul 1, spre exemplu, nu este popular deoarece nu este accesibil din 2, iar nici nodul 2 nu este accesibil din 1.