Costel a descoperit într-o debara servieta cu cifru a tatălui său. Cifrul este compus din 4 discuri metalice pe care sunt inscripţionate cifrele de la 0 la 9. Fiecare disc se poate mişca individual, de sus în jos sau de jos în sus, formându-se combinaţii de cifre. De multe ori, datorită comodităţii, combinaţia ce permite deschiderea servietei este formată numai din cifre identice: 0000, 1111 etc.
Costel îşi imaginează un cifru compus din N discuri metalice, fiecare având inscripţionate cifrele de la 0 la 9, fiecare putând fi deplasat în cele două direcţii specificate anterior. Prin mutare Costel înţelege deplasarea unui disc în sus sau în jos, cu o singură poziţie, adică deplasarea discului până la cifra precedentă, respectiv următoare celei curente.
Cerinţă
Realizaţi un program care, cunoscând poziţia iniţială a fiecărui disc dintre cele N discuri ale cifrului, determină şi afişează:
a) cifra cea mai mare care apare pe discurile cifrului în forma iniţială;
b)
b1) numărul minim de mutări necesare pentru ca numărul obţinut pe cifru să fie compus numai din cifre identice, număr necesar deschiderii servietei;
b2) cifra cea mai mică ce se poate obţine în urma efectuării numărului minim de mutări determinat;
b3) numărul de combinaţii formate din cifre identice, care se poate obţine în urma efectuării numărului minim de mutări determinat.
Date de intrare
Fişierul cifru5.in conţine:
• pe prima linie numărul natural N reprezentând numărul discurilor;
• pe următoarele N linii câte o cifră, reprezentând cifra curentă de pe fiecare disc al cifrului.
Date de ieşire
În fişierul cifru5.out se vor afişa, pe linii separate, cele 4 valori solicitate.
Restricţii
• 1 < N ≤ 100 000
• Un disc poate să rămână nemişcat.
Exemple
cifru5.in
cifru5.out
Explicaţii
4
7
3
9
0
9
7
0
2
Avem un cifru cu 4 discuri. Iniţial, cifrul este în starea 7390 (primul disc este poziţionat pe cifra 7, al doilea pe cifra 3 etc.)
Cea mai mare cifră de pe cifru este cifra 9.
Numărul minim de mutări este 7 şi se poate obţine în două moduri:
1. Deplasăm primul disc cu 2 poziţii în sus, al doilea disc cu 4 poziţii în jos, al treilea rămâne nemişcat, iar ultimul se deplasează cu o poziţie în jos. Combinaţia obţinută este 9999.
2. Deplasăm primul disc cu 3 poziţii în sus, al doilea disc cu 3 poziţii în jos, al treilea cu o poziţie în sus, iar ultimul rămâne nemişcat. Combinaţia obţinută este 0000.
Astfel, cifra cea mai mică ce formează combinaţia cu număr minim de mutări este 0. Avem 2 combinaţii care se pot obţine în numărul minim de mutări determinat: 0000 şi 9999.